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Abstract

Acoustic signals of small arm’s fire, the muzzle blast and
the shock wave generated by a supersonic bullet in air,
are difficult to mask and can be exploited for localization
of the hidden sniper. This papers presents the system of
acoustic measurements, based on a number of both di-
rectional and omnidirectional microphones detecting the
shock wave only, yielding exact solution for the sniper di-
rection in spite of certain measurement errors in the di-
rectional measurements. The system has a self-correcting
ability concerning the sound directional measurements
what contributes to the system technical feasibility. Aux-
iliary muzzle blast measurements would yield the sniper
position.

1 Introduction

Recent bad experience in the former Yugoslavia and Iraq,
as well as the yet earlier in Somalia, shows the treat
posed by well hidden snipers to peace-keepers and civil-
ians. Equipped with relatively cheap and light arms, the
snipers can easily mask their post to avoid detection and
destroying. Only the acoustic signals: the muzzle blast to
some degree, and primarily the shock wave [1] generated
by a supersonic bullet passing by could be exploited for
the effective sniper detection as they cannot be in prin-
ciple masked. This requires the appropriate system to
be installed in the safeguarded area that makes necessary
acoustic measurements and evaluates the sniper position
or, at least, its direction, allowing one to direct a proper
counter-fire.

Such systems are studied in recent literature [2,3], where
the two above mentioned acoustic measurements are used
to localize the sniper. Assuming known bullet velocity
and correct detection of the muzzle blast among possible
nearly simultaneous other blasts, these two measurements
allow one to compute the sniper position with rather low
accuracy; experiments show the 50% chance of successful
counter-fire [4]. The substantial difficulty arises from at
least two problems connected with the acoustic measure-
ment of the muzzle blast: 1) this is the relatively low-
frequency signal which arrival time can be detected with
low resolution, and 2) it propagates over rather large dis-
tance in air of generally variable properties bending the
sound propagation path and somehow enlarging the prop-
agation time. This contributes to the evaluation error of
the sniper distance (it is evaluated from the time differ-
ence between the muzzle blast and the shock wave arrival
times at the measuring microphone, assuming known bul-
let velocity).

Reasonably, one is interested in destroying the sniper
whose fire is directed at him and posing the real treat to
him, that is which fire miss-distance is small. Thus the
interesting shock wave signal propagates over rather small
distance trough reasonably assumed uniform air. More-
over, this is the very characteristic N-shaped signal with
the rising time much below 1µs thus the shock wave ar-
rival time can be detected with high resolution by proper

wide-band microphone measuring the high-frequency sig-
nals. This makes the acoustic measurements of the shock
wave much more accurate and reliable then the measure-
ment of the muzzle blast. Even the information about
the bullet dimension - thus on the used sniper’s arm - is
included in the shock-wave N-shaped signal, and can be
exploited for defence purposes.

These peculiar properties of the shock-wave measure-
ments, which significance is seemingly underestimated in
the existing literature, deserve high attention in the con-
sidered problem of the acoustic sniper localization. In
fact, only the shock wave arrival time measurements is
discussed in this paper. Naturally, using the shock wave
measurements alone, one cannot evaluate the distance cov-
ered by the speeding bullet and the position of the sniper;
the muzzle blast measurements must be used for that ac-
cording to the well developed method presented in [3].
However, the shock-wave measurements are able to yield,
as is shown in this paper, the accurate direction of the
bullet velocity, assumed close to the sniper direction, that
is sufficient to direct the counter-fire. Moreover, the accu-
rate direction to sniper allows us to detect the sniper with
other than acoustic observations, the optical detection of
the hot muzzle gases, for instance.

The evaluation of the bullet velocity direction requires
measurements of the shock wave arrival times at a num-
ber of observation points (microphones). As known, the
shock wave generated by a supersonic bullet has form
of a cone; its axis is the bullet path (assumed straight)
and the conical angle depends on the bullet velocity (as-
sumed constant). The measurement data must be suffi-
cient to solve the geometrical problem of finding the cone
parameters and thus finding the sniper direction. The
problem is essentially nonlinear and quite difficult if only
the shock wave arrival times are known at given micro-
phone positions. To ease the computation task, we pro-
pose here the directional measurements instead by two
directional microphones placed in certain distance from
each other; a number of additional omnidirectional mea-
surements would improve the localization accuracy and as-
sure the solution uniqueness. These auxiliary microphones
could be planted ‘in field’ over the safeguarded area, trans-
mitting their raw observations to the system computer by
standard radio-links.

It is shown in Sec. 3 that only two directional measure-
ments suffice to evaluate the cone parameters. The angu-
lar accuracy of the measurements is expected much lower
than the temporal accuracy of the shock wave arrival time
measurements, which can be assumed exact. A number
of omnidirectional measurements (yielding exact data of
the shock wave arrival times) helps us to overcome the
problem with inaccurate directional measurements that
can contribute much to the localization accuracy. Three
systems are discussed in Sec. 6 based on 2 directional mi-
crophones plus 4 omnidirectional ones distributed over the
safeguarded area, and 3+3 or 4+2 corresponding micro-
phones; the numbers necessary to obtain the systems of
directional measurement self-correcting ability, the rem-
edy to the technical problem of directional measurements.
Numerical simulations show that the convergent (exact)
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solution is obtained (provided that the microphones are
suitably placed with respect to the bullet path) even for
directional measurement inaccuracy as large as 1% or even
more.
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Fig. 1. The shock wave
cone at the observation time
t1 when the supersonic bullet
tip position is O1.

Fig. 2. The shock wave
expands over time with the
sound velocity in air c.

2 The shock-wave geometry

Assuming constant velocity v and straight bullet path, the
generated weak shock wave in air has a form of a cone S1
(Fig. 1) of axis k (the normalized vector directed against
the bullet velocity, toward the sniper) and a tip O1, the
position of the bullet tip at the given observation time t1.
The acoustic signal of the shock wave propagating with
velocity c in direction normal to the shock wave cone, ar-
rives to observers positioned at ri (in given cartesian coor-
dinates) at the shock wave arrival times ti. All observers
residing on the shock wave cone S1 would detect the wave
at the same time t1 (simultaneously). Here we only con-
sider the shock wave generated by the bullet tip moving
with the supersonic velocity v > c. This correspond to the
front edge of the acoustic N -shaped signal [5].

At the time t2 > t1, the shock wave cone tip moves to
the point O2:

O2 = O1 − vk(t2 − t1), (1)

and the cone broadens by the distance d normal to the
cone S (Fig. 2),

d = c(t2 − t1), (2)

where c is the sound velocity in air (constant in the as-
sumed homogeneous air). The shock wave conical angle
is

sin ϑ = [c(t2 − t1)]/[v(t2 − t1)] = c/v, (3)

assuming the supersonic bullet.
The important conclusion results from the above that

shifting the observation point r2 (where the shock wave
arrives at the time t2) by the distance d, Eq. (2), against
the outward normal n2 to the observed shock wave-front
(the cone S2), places the point r′2 on the first cone S1

(Fig. 2); generally

r′i = ri − cni(ti − t1), (4)

for ith microphone measuring the shock wave arrival time
ti at position ri.

3 Directional measurements

Let the two directional microphones placed at r1 and r2
detect the shock wave arrival times t1, t2, and simultane-
ously the sound propagation directions n1 and n2 (which
are the outward normals to the shock wave cone), respec-
tively. It is shown below that these two measurements
suffice to evaluate 1) the cone axis k and 2) its tip O1, as
well as 3) the conical angle ϑ, that is 4) the bullet velocity
v, and finally 5) its path in space determined by {O1, k, v}.

Consider a line described by its point ri and the vector
ni along it. The line is the sound ray generated at Pi
and arriving at ri at the time ti (Fig. 3). The bullet path
described by the point O1 and the vector k crosses the
rays (ri, ni), i = 1, 2, at points Pi at the same angle

ϑ′ = π/2− ϑ, (5)

as it results from the geometry shown in Fig. 2. This yields
the following vector equations (a dot meaning the scalar
product)

ri − αini = Pi, i = 1, 2,
k = ±(P1 − P2)/ ‖P1 − P2 ‖,

k · n1 = k · n2 < 0,
(6)

which the last inequality helps us to choose the correct
sign to k; αi are unknown constants (scalars).

On the strength of Eq. (2),

(r2 − P2) · n2 − (r1 − P1) · n1 = d = c(t2 − t1), (7)

and the second of Eqs. (6) multiplied by ‖P1 − P2 ‖:
(r1−α1n1−r2+α2n2)·n1 = (r1−α1n1−r2+α2n2)·n2, (8)

one obtains:

α1 =
(r2 − r1) · n2 + c(t1 − t2)

1− n1 · n2
,

α2 =
(r1 − r2) · n1 + c(t2 − t1)

1− n1 · n2
,

sinϑ = −n1 · k > 0, i = 1, 2

(9)

where ni, k are normalized vectors: ‖ ni ‖= ni · ni = 1,
similarly k·k = 1. The solution does not exist if n1 ·n2 = 1,
which particular case (where both ri reside on the same
generatrix of the cone) is neglected in this study.

The cone tip O1 can be evaluated from the right triangle
(O1, P1, r1), Fig. 4, where both ϑ and

‖P1 − r1 ‖= (r1 − P1) · n1 = α1 (10)

are known, yielding

O1 = r1 + α1(
k

n1 · k − n1) = P1 − k
α1

sin ϑ
,

v = −c/(n1 · k).
(11)

This concludes the searched solution.
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Fig. 3. The cone axis k
crosses two normals to the
cone surface n1,2 at the same
angle ϑ′.

Fig. 4. The consistency
condition of omnidirectional
measurement at r3 results
from comparison of the con-
ical angle ϑ.

4 Consistency criterion

Having three or more directional measurements of the
same shock wave, the same k, v and other parameters
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should result from Eqs. (9), (11), evaluated from differ-
ent pairs of data but including the same (ri, ni, ti). For
example, Eqs. (9) applied to the pairs (1, 2) and (2, 3),
should yield the same α2 equal

(r1 − r2) · n1 + c(t2 − t1)
1− n1 · n2

=
(r2 − r3) · n3 + c(t2 − t3)

1− n1 · n3
(12)

in order to obtain the same P2 and thus the same k. This
consistency condition (applied for different αi) will be ex-
ploited later in order to reduce the measurement errors
causing the above equation to fail.

Now consider an omnidirectional measurement of the
shock wave arrival time t3 by a microphone placed at
point r3 (Fig. 4). It is assumed here that the same shock
wave (the same bullet) is detected by the directional mi-
crophones yielding the data (ri, ni, ti), i = 1, 2, and the
evaluated shock wave tip O1 at the time t1. The shock
wave cone tip at the time t3 is O3:

O3 = O1 − vk(t3 − t1), (13)

according to Eq. (1). Naturally, the cone has the same
conical angle ϑ = arcsin(c/v), hence

(r3 −O3) · k
‖r3 −O3 ‖ = cos ϑ. (14)

If measurements are exact then

ξ =

√
1−

[
(r3 −O3) · k
‖r3 −O3 ‖

]2

+ k · n1 (15)

equals zero (k · n1 = − sin ϑ), otherwise ξ 6= 0 indicating
the incorrect measurement data. The condition ξ = 0 is
the consistency condition of omnidirectional measurement
data with respect to the pair of directional measurements
which can include certain errors concerning the directions
ni. According to the earlier assumption that the arrival
time is measured exactly, the omnidirectional measure-
ments are considered exact.

Introducing matrix notations where vectors ri, Oi, k, ni
are row matrices and r′, k′ etc. are their transposed (col-
umn) matrices, the above equation can be conveniently
rewritten in the form

ξ(3) =

√
z(I − k′k)z′

zz′
+ kn′1, z = r3 −O3 (16)

(I is a unitary matrix). All the earlier vector equations
can be rewritten and evaluated in similar manner, and
the same notations are applied to both vectors and the
corresponding matrices.

The measurement consistency condition ξ = 0 will help
us reducing the directional measurement inaccuracy. As-
suming ri, ti known exactly and admitting certain errors
δi in the measured shock wave propagation direction ni,
this condition yields an equation for δi. Several omnidi-
rectional measurements (at points r3, r4, . . .) are necessary
to obtain sufficient number of equations in order to eval-
uate all components of vectors δi of interest. Regretfully,
Eqs. (16), (9) and others are highly nonlinear and their
solution may not be unique, in general. It is assumed here
that measurement can be only slightly inaccurate what
allows us to apply the perturbation analysis with respect
to δi. The resulting linear equations for the measurement
errors δi can be easily solved. It is a matter of numerical
testing how large δi can be admitted to obtain convergent
solution for given microphone positions ri, and the bullet
miss-distance and direction −k.

5 Perturbation analysis

Assuming the measured (normalized) direction ni + δi in-
stead of the correct ni, it is evident that the equality

δi · ni = 0 (17)

results from the normalization condition (ni+δi)·(ni+δi),
neglecting higher order terms. Eq. (17) shows that δi has
only two independent components orthogonal to ni. We
may choose them in directions of two orthogonal vectors:

e
(1)
i = ni × ri,

e
(2)
i = ni × e

(1)
i ,

(18)

again normalized after evaluation of the vector products
denoted here by ×. In matrix notations:

ei = [e(1)
i ; e(2)

i ],
δi = diei,

(19)

where di is the row matrix with two components fully char-
acterizing the measurement errors (for the already chosen
ei).

In perturbation analysis di is infinitesimal, but in real
computations, for δi small but finite, the corrected vectors
ni ← ni + δi must be always normalized in order to keep
the earlier equations, like Eq. (15), valid. The perturba-
tion analysis (for infinitesimal di) of Eqs. (9) yields in the
matrix notations and using the summation convention:

δαi = δjaji,

[aji] =
1

1− n1n′2

[
α1n

′
2 α2n

′
1 + (r1 − r2)′

α1n
′
2 + (r2 − r1)′ α2n

′
1

]
,

(20)
where α1,2 are unperturbed scalars evaluated from Eq. (9)
within zero-order accuracy with respect to δi. To indicate
the set of data: (n1, t1, r1) and (n2, t2, r2) used for eval-
uation of these coefficients, the superscript (1, 2) will be
introduced in the subsequent analysis like a

(1,2)
i , i = 1, 2.

Similarly, one can obtain the perturbation equations for

δOi = δjOji, δk = δjkj , and δξ = δjξj (21)

(the unperturbed ξ has zero value). Note that again, δk
is an orthogonal vector to k:

(δk)k′ = 0 (22)

because of normalization of k. It can be evaluated from
the perturbation of P1 − P2, Eqs. (6); the perturbation
of ξ is evaluated from Eqs. (15) provided that the per-
turbations to Oi, Eqs. (11)–(13) are evaluated first. The
explicit formula are too long to be presented here; note
only to the introduced perturbation matrices Oji, kj , ξj in
Eqs. (21) which will be applied in further analysis.

6 Self-correcting systems

Two directional measurements introduce four unknown er-
rors: d

(1,2)
i , i = 1, 2 (each δi has two independent compo-

nents d
(1,2)
i ). Four independent conditions from the mea-

surement consistency conditions, for instance, are needed
to evaluate d

(j)
i , i, j = 1, 2 and to retrieve the correct val-

ues of ni.
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This shows that two directional and four omnidirec-
tional (introducing no extra errors) measurements of the
shock wave generated by the passing-by bullet are suffi-
cient for evaluation of of correct ni in spite of the measure-
ment errors. The correct values of ni allow one to evaluate
the correct bullet path parameters, k,O1 and v, that is to
obtain correct sniper localization. One may conclude that
the directional measurements yield only the first guess of
these parameters to ease the corresponding computation
task based on the perturbation analysis.

Another measurement systems can be proposed as well.
For example, three directional measurements (ni, ti, i =
1, 2, 3) introducing six unknowns d

(1,2)
j , i = 1, 2, 3, and

three ominidirectional ones (at different ri, i = 4, 5, 6)
which can be exploited for formulation of six consistency
conditions ξ

(i,j)
4,5,6, evaluated using different pairs of direc-

tional data: (n1, n3) and (n2, n3), for instance. The other
possibility is to formulate three consistency conditions like
in Eq. (12) for αi, appended by three ξi chosen to ob-
tain the best conditioned system of equation. Yet another
system uses four directional measurements and two om-
nidirectional ones; they will be discussed below in some
details. Note however that directional measurements are
much more expensive than the omnidirecrtional ones thus
the first above mentionad system, “2+4,” is prefered over
two other: “3+3” and “4+2.”

At first glance, the system of four directional measure-
ments seems self-correcting without omnidirectional mea-
surements. Namely, we can formulate the sufficient num-
ber of consistency conditions like Eq. (12) using different
pairs of the directional measurements only. Regretfully,
the rank of such system appears to be only six indicating
that two another equations are necessary, namely resulting
from independent omnidirectional measurements.

6.1 The system “2+4”

The system of equations resulting from two directional
measurement data: ti, ni + δi at positions ri, i = 1, 2,
and four omnidirectional measurements: tj at different
rj , j = 3, . . . , 6, results from four consistency criterions
ξ(j), Eq. (16). Explicitly, according Eq. (21):

δiξ
(j)
i = xj , i = 1, 2, j = 3, 4, 5, 6, (23)

what can be further transformed using Eq. (19) to ob-
tain the complete system of equations for the unknown
d
(l)
i , i, l = 1, 2:

2∑

i,l=1

d
(l)
i q

(l)
ij = xj , q

(l)
ij = e

(l)
i ξ

(j)
i , (24)

where the values of xj are ξj evaluated from Eq. (16) using
the measurement data (that is the values of ni including
certain error δi what causes ξj 6= 0).

This solved, yields the measurement errors δi which sub-
tracted from the measured data yield the correct directions
ni. In practice, δi are not infinitesimal and the values of
ξ
(j)
i are evaluated from inaccurate values n̄i = ni + δi. Al-

though the n̄i−δi is considered closer to the correct ni, it is
evident that the correct solution can be obtained repeat-
ing the calculations in recursive manner. If convergent,
they yield the searched correct ni, and finally the correct
bullet path parameters, particularly the most important
k.

6.2 The system “3+3”

Three directional measurement data, (ni, ti) at micro-
phone positions ri, i = 1, 2, 3, substituted into Eqs. (9),
yield different values of the same αj due to inaccurate ni.
The perturbation expansion yields three equations result-
ing from comparison of the same αi, i = 1, 2, 3, Eq. (12):

δk[a(i,m)
k1 − a

(i,n)
ki ] = xi, (25)

where xi = α
(i,n)
i − α

(i,m)
i is the difference of the two

values of αi computed from Eqs. (9) using different pairs
of measurements: (i, m),m 6= i, and (i, n), n 6= i; the
same i is indicated in the superscripts of the perturbed
coefficients evaluated from Eqs. (20).

Another three equations can be chosen from several pos-
sible consistency conditions (16) concerning three (l =
1, 2, 3) omnidirectional measurements and evaluated using
different pairs of directional measurements. One should
choose those which yield the best conditioned final system
of equations. The chosen equations:

δkξ
(l;n,m)
k = x

(n,m)
l , (26)

appended to the earlier formulated Eqs. (25) yield com-
plete system of equations for six unknown components
d
(1,2)
k , k = 1, 2, 3, cf. Eq.(24). Like in previous section,

the localization problem is solved iteratively, with each
step improving the values of ni used for evaluation of xi
for the next step. One may also seek the least-square
solution to all possible equations (25), (26), but this usu-
ally reduces the condition factor of the equation matrix
and thus worsens the convergence of iterations mentioned
above.

6.3 The system “4+2” and higher

The last system discussed here is based on four directional
and two omnidirectional measurements. The correspond-
ing equations are formulated in the way presented in previ-
ous sections, using some of multiple consistency conditions
(12) and (16). They yield still larger system of equations,
here of dimension eight, that is to be solved iteratively, if
the iterations converge.

Naturally, the system of equations can be formulated
neglecting directional measurement in one point and us-
ing the method “3+3” (or even “2+4” if two ni are ne-
glected). This makes evident that six directional measure-
ments alone (without extra omnidirectional ones) suffice
for the solution of the sniper localization problem. Such
system is not however, much technically attractive taking
into account the cost of directional measurements.

7 Examples and conclusions

The first considered system, “2+4,” is the cheapest one.
Numerical results show that happily, it performs also bet-
ter than others, yielding convergent system of equations
for larger domains of bullet path parameters and larger
directional measurement inaccuracy.

In numerical example presented here for the system
“2+4”, the microphone are placed on ground (this is also
the sniper’s post level) and distributed over the protected
area about 20m long (Fig. 5; squares represent directional
microphones, circles - omnidirectional ones). The bullet
miss-distance is assumed 2m above the ground, and its
velocity is 3c. The directional inaccuracy is modelled by
performing calculations for 20 random directions ni + δi
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within 1% limit off the correct ni. If all calculations con-
verge to correct ni than the corresponding bullet path is
plotted with dash, otherwise with solid line. The example
shows that the system fails in only few cases of sniper’s
fire aimed at different points from different sniper’s posts.

The other two system are substantially inferior, fail-
ing in much more cases of the similar simulations. This
is caused by generally larger condition factor of the ma-
trix of equations. For smaller measurements errors how-
ever, all three systems perform well; Fig. 6 presents the
case “4+2” assuming measurement errors a hundred times
smaller that in the case “2+4”. More extensive simula-
tions, beyond the scope of this paper, for realistic cases of
the microphone distribution, sniper’s positions and bul-
let path orientation with respect to the safeguarded area,
would reveal the true value of the above proposed systems.

Having the bullet path evaluated (characterized by
O1, k, v), one can easily exploit the other acoustic infor-
mation about the fire - the acoustic signal of the muzzle
blast. Assuming small miss-distance of the sniper’s fire
and sufficiently large distance (L) to the sniper, the muz-
zle blast signal propagates nearly along the bullet path.
This gives the approximation concerning the time differ-
ence between the measured shock wave (t1) and muzzle
blast (to) arrival times:

L/c− L/v = to − t1 (27)

(t1, t2, . . . are assumed close), from which one easily find
L and thus the sniper’s position measured along the eval-
uated bullet path.

Concluding, the acoustic system is proposed for local-
ization of the sniper position fully exploiting the most re-
liable [6] and impossible to mask information delivered by
a supersonic bullet. Making two or more directional, and
a number of supplemental omnidirectional measurements
of the shock wave signal with adequate accuracy (note
that this is a ‘single-event’ measurement that cannot be
repeated to improve it), one can evaluate the bullet path
parameters (particularly the most important bullet veloc-
ity direction −k pointing at sniper’s post) and the bullet
velocity with improved accuracy. The proposed system
has the ability to correct the directional measurement in-
accuracies. The numerical examples based on perturba-
tion linearization of highly nonlinear equations governing
the geometry of the considered problem shows that this
self-correcting ability works well for the measurement er-
rors as large as 1%, what is expected technically feasible.
Fully nonlinear analysis would certainly even lower this re-
quirement admitting still larger directional measurement
inaccuracy and making the presented concept of the sniper
localization even more attractive for implementation, sav-
ing precious life of peace-keepers and innocent civilians
from the snipers’ thread.

Instantaneous evaluation of the sniper’s direction (−k)
is essential for this reason also that it may enable us to
apply the other countermeasures. For example, properly
directed optical (infrared) sensor can pick-up the cloud of
hot muzzle gases detecting precisely the sniper’s post. In
any cases, fast response in necessary to prevent sniper to
change his post; perhaps automatic counter-fire is neces-
sary. Having known of such countermeasure, the sniper
would try to act fast, what would surely contribute to
degradation of his fire making it less lethal in any cases.
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3. J. Bédard, S. Paré, T. Johson, “Ferret Small Arms’
Fire Detection System,” ibid.

4. E. Spagat, “High-Tech Tools Pinpoint Gunfire in
Iraq,” presented on Yahoo News, Mar. 23, 2004.

5. R. Stoughton, “Measurements of small-caliber ballis-
tic shock wave in air,” J. Acoust. Soc. Am., 102,
781–787 (1997).

6. R. Raspet, H.E. Bass, L. Yao, P. Boulanger, “Sta-
tistical and numerical study of the relationship be-
tween turbulence and sonic boom characteristics,”
J. Acoust. Soc. Am., 96, 3621–3626 (1994).

−5 0 5 10 15 20 25 30 35 40 45

−10

0

10

20

30

40
sniper posts 

s
a
f 
e
g   a
u   r
a   e
r    a
d
e
d 

Fig. 5. The simulation of the system “2+4” for 1% measure-
ment inaccuracies of directional measurements. Axes units
are 1[m]. Dot lines shows successful evaluation of the sniper
direction k, and solid lines indicate cases of not convergent
iterations.
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Fig. 6. The simulation for the system “4+2” with directional
errors within 0.01% only. Dot lines present successful com-
putations; cases where they failed are represented by solid
lines.
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